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Abstract

Today’s software systems are increasingly relying on the

“power of the crowd” to identify new security vulnera-

bilities. And yet, it is not well understood how repro-

ducible the crowd-reported vulnerabilities are. In this

paper, we perform the first empirical analysis on a wide

range of real-world security vulnerabilities (368 in total)

with the goal of quantifying their reproducibility. Fol-

lowing a carefully controlled workflow, we organize a

focused group of security analysts to carry out reproduc-

tion experiments. With 3600 man-hours spent, we ob-

tain quantitative evidence on the prevalence of missing

information in vulnerability reports and the low repro-

ducibility of the vulnerabilities. We find that relying on a

single vulnerability report from a popular security forum

is generally difficult to succeed due to the incomplete

information. By widely crowdsourcing the information

gathering, security analysts could increase the reproduc-

tion success rate, but still face key challenges to trou-

bleshoot the non-reproducible cases. To further explore

solutions, we surveyed hackers, researchers, and engi-

neers who have extensive domain expertise in software

security (N=43). Going beyond Internet-scale crowd-

sourcing, we find that, security professionals heavily rely

on manual debugging and speculative guessing to infer

the missed information. Our result suggests that there is

not only a necessity to overhaul the way a security fo-

rum collects vulnerability reports, but also a need for au-

tomated mechanisms to collect information commonly

missing in a report.

∗Work was done while visiting The Pennsylvania State University.

1 Introduction

Security vulnerabilities in software systems are posing a

serious threat to users, organizations and even nations. In

2017, unpatched vulnerabilities allowed the WannaCry

ransomware cryptoworm to shutdown more than 300,000

computers around the globe [24]. Around the same time,

another vulnerability in Equifax’s Apache servers led to

a devastating data breach that exposed half of the Amer-

ican population’s Social Security Numbers [48].

Identifying security vulnerabilities has been increas-

ingly challenging. Due to the high complexity of mod-

ern software, it is no longer feasible for in-house teams

to identify all possible vulnerabilities before a software

release. Consequently, an increasing number of soft-

ware vendors have begun to rely on “the power of the

crowd” for vulnerability identification. Today, anyone

on the Internet (e.g., white hat hackers, security analysts,

and even regular software users) can identify and report a

vulnerability. Companies such as Google and Microsoft

are spending millions of dollars on their “bug bounty”

programs to reward vulnerability reporters [38, 54, 41].

To further raise community awareness, the reporter may

obtain a Common Vulnerabilities and Exposures (CVE)

ID, and archive the entry in various online vulnerability

databases. As of December 2017, the CVE website has

archived more than 95,000 security vulnerabilities.

Despite the large number of crowd-reported vulnera-

bilities, there is still a major gap between vulnerability

reporting and vulnerability patching. Recent measure-

ments show that it takes a long time, sometimes multiple

years, for a vulnerability to be patched after the initial

report [43]. In addition to the lack of awareness, anec-

dotal evidence also asserts the poor quality of crowd-

sourced reports. For example, a Facebook user once

identified a vulnerability that allowed attackers to post



messages onto anyone’s timeline. However, the initial

report had been ignored by Facebook engineers due to

“lack of enough details to reproduce the vulnerability”,

until the Facebook CEO’s timeline was hacked [18].

As more vulnerabilities are reported by the crowd, the

reproducibility of the vulnerability becomes critical for

software vendors to quickly locate and patch the prob-

lem. Unfortunately, a non-reproducible vulnerability is

more likely to be ignored [53], leaving the affected sys-

tem vulnerable. So far, related research efforts have pri-

marily focused on vulnerability notifications, and gener-

ating security patches [26, 35, 43, 45]. The vulnerability

reproduction, as a critical early step for risk mitigation,

has not been well understood.

In this paper, we bridge the gap by conducting the

first in-depth empirical analysis on the reproducibility

of crowd-reported vulnerabilities. We develop a series

of experiments to assess the usability of the information

provided by the reporters by actually attempting to re-

produce the vulnerabilities. Our analysis seeks to answer

three specific questions. First, how reproducible are the

reported vulnerabilities using only the provided informa-

tion? Second, what factors have made certain vulnera-

bilities difficult to reproduce? Third, what actions could

software vendors (and the vulnerability reporters) take to

systematically improve the efficiency of reproduction?

Assessing Reproducibility. The biggest challenge is

that reproducing a vulnerability requires almost exclu-

sively manual efforts, and requires the “reproducer” to

have highly specialized knowledge and skill sets. It is

difficult for a study to achieve both depth and scale at

the same time. To these ends, we prioritize depth while

preserving a reasonable scale for generalizable results.

More specifically, we focus on memory error vulnerabil-

ities, which are ranked among the most dangerous soft-

ware errors [7] and have caused significant real-world

impacts (e.g., Heartbleed, WannaCry). We organize a fo-

cused group of highly experienced security researchers

and conduct a series of controlled experiments to repro-

duce the vulnerabilities based on the provided informa-

tion. We carefully design a workflow so that the repro-

duction results reflect the value of the information in the

reports, rather than the analysts’ personal hacking skills.

Our experiments demanded 3600 man-hours to finish,

covering a dataset of 368 memory error vulnerabilities

(291 CVE cases and 77 non-CVE cases) randomly sam-

pled from those reported in the last 17 years. For CVE

cases, we crawled all the 4,694 references (e.g., technical

reports, blogs) listed on the CVE website as information

sources for the reproduction. We consider these refer-

ences as the crowd-sourced vulnerability reports which

contain the detailed information for vulnerability repro-

duction. We argue that the size of the dataset is reason-

ably large. For example, prior works have used reported

vulnerabilities to benchmark their vulnerability detection

and patching tools. Most datasets are limited to less than

10 vulnerabilities [39, 29, 40, 46, 25], or at the scale of

tens [55, 56, 27, 42], due to the significant manual efforts

needed to build ground truth data.

We have a number of key observations. First, in-

dividual vulnerability reports from popular security fo-

rums have an extremely low success rate of reproduction

(4.5% – 43.8%) caused by missing information. Second,

a “crowdsourcing” approach that aggregates information

from all possible references help to recover some but not

all of the missed fields. After information aggregation,

95.1% of the 368 vulnerabilities still missed at least one

required information field. Third, it is not always the

most commonly missed information that foiled the re-

production. Most reports did not include details on soft-

ware installation options and configurations (87%+), or

the affected operating system (OS) (22.8%). While such

information is often recoverable using “common sense”

knowledge, the real challenges arise when the vulner-

ability reports missed the Proof-of-Concept (PoC) files

(11.7%) or, more often, the methods to trigger the vul-

nerability (26.4%). Based on the aggregated informa-

tion and common sense knowledge, only 54.9% of the

reported vulnerabilities can be reproduced.

Recovering the missed information is even more chal-

lenging given the limited feedback on “why a system did

not crash”. To recover the missing information, we iden-

tified useful heuristics through extensive manual debug-

ging and troubleshooting, which increased the reproduc-

tion rate to 95.9%. We find it helpful to prioritize test-

ing the information fields that are likely to require non-

standard configurations. We also observe useful correla-

tions between “similar” vulnerability reports, which can

provide hints to reproduce the poorly documented ones.

Despite these heuristics, we argue that significant man-

ual efforts could have been saved if the reporting system

required a few mandated information fields.

Survey. To validate our observations, we surveyed

external security professionals from both academia and

industry1. We received 43 valid responses from 10 dif-

ferent institutions, including 2 industry labs, 6 academic

groups and 2 Capture The Flag (CTF) teams. The survey

results confirmed the prevalence of missing information

in vulnerability reports, and provided insights into com-

mon ad-hoc techniques used to recover missing informa-

tion.

Data Sharing. To facilitate future research, we will

share our fully tested and annotated dataset of 368 vul-

1Our study received the approval from our institutions’ IRB

(#STUDY00008566).



nerabilities (291 CVE and 77 non-CVE)2. Based on the

insights obtained from our measurements and user study,

we create a comprehensive report for each case where

we filled in the missing information, attached the cor-

rect PoC files, and created an appropriate Docker Im-

age/File to facilitate a quick reproduction. This can serve

as a much needed large-scale evaluation dataset for re-

searchers.

In summary, our contributions are four-fold:

• First, we perform the first in-depth analysis on the re-

producibility of crowd-reported security vulnerabili-

ties. Our analysis covers 368 real-world memory error

vulnerabilities, which is the largest benchmark dataset

to the best of our knowledge.

• Second, our results provide quantitative evidence on

the poor reproducibility, due to the prevalence of miss-

ing information, in vulnerability reports. We also

identify key factors which contribute to reproduction

failures.

• Third, we conduct a user study with real-world secu-

rity researchers from 10 different institutions to vali-

date our findings, and provide suggestions on how to

improve the vulnerability reproduction efficiency.

• Fourth, we share our full benchmark dataset of repro-

ducible vulnerabilities (which took 3000+ man-hours

to construct).

2 Background and Motivations

We start by introducing the background of security vul-

nerability reporting and reproduction. We then proceed

to describe our research goals.

Security Vulnerability Reporting. In the past decade,

there has been a successful crowdsourcing effort from

security professionals and software users to report and

share their identified security vulnerabilities. When peo-

ple identify a vulnerability, they can request a CVE ID

from CVE Numbering Authorities (i.e., MITRE Corpo-

ration). After the vulnerability can be publicly released,

the CVE ID and corresponding vulnerability information

will be added to the CVE list [5]. The CVE list is sup-

plied to the National Vulnerability Database (NVD) [14]

where analysts can perform further investigations and

add additional information to help the distribution and re-

production. The Common Vulnerability Scoring System

(CVSS) also assigns “severity scores” to vulnerabilities.

CVE Website and Vulnerability Report. The CVE

website [5] maintains a list of known vulnerabilities that

have obtained a CVE ID. Each CVE ID has a web page

2Dataset release: https://github.com/VulnReproduction/

LinuxFlaw

with a short description about the vulnerability and a list

of external references. The short description only pro-

vides a high-level summary. The actual technical details

are contained in the external references. These refer-

ences could be constituted by technical reports, blog/-

forum posts, or sometimes a PoC. It is often the case,

however, that the PoC is not available and the reporter

only describes the vulnerability, leaving the task of craft-

ing PoCs to the community.

There are other websites that often act as “external

references” for the CVE pages. Some websites primar-

ily collect and archive the public exploits and PoC files

for known vulnerabilities (e.g., ExploitDB [9]). Other

websites directly accept vulnerability reports from users,

and support user discussions (e.g., Redhat Bugzilla [16],

OpenWall [15]). Websites such as SecurityTracker [20]

and SecurityFocus [21] aim to provide more complete

and structured information for known vulnerabilities.

Memory Error Vulnerability. A memory error vul-

nerability is a security vulnerability that allows attack-

ers to manipulate in-memory content to crash a program

or obtain unauthorized access to a system. Memory

error vulnerabilities such as “Stack Overflows”, “Heap

Overflows”, and “Use After Free”, have been ranked

among the most dangerous software errors [7]. Popu-

lar real-world examples include the Heartbleed vulnera-

bility (CVE-2014-0160) that affected millions of servers

and devices running HTTPS. A more recent example is

the vulnerability exploited by the WannaCry cryptoworm

(CVE-2017-0144) which shut down 300,000+ servers

(e.g., those in hospitals and schools) around the globe.

Our paper primarily focuses on memory error vulnera-

bilities due to their high severity and real-world impact.

Vulnerability Reproduction. Once a security vul-

nerability is reported, there is a constant need for people

to reproduce the vulnerability, especially highly critical

ones. First and foremost, developers and vendors of the

vulnerable software will need to reproduce the reported

vulnerability to analyze the root causes and generate se-

curity patches. Analysts from security firms also need to

reproduce and verify the vulnerabilities to assess the cor-

responding threats to their customers and facilitate threat

mitigations. Finally, security researchers often rely on

known vulnerabilities to benchmark and evaluate their

vulnerability detection and mitigation techniques.

Our Research Questions. While existing works fo-

cus on vulnerability identification and patches [53, 26,

35, 43, 45], there is a lack of systematic understanding

of the vulnerability reproduction problem. Reproducing

a vulnerability is a prerequisite step when diagnosing and

eliminating a security threat. Anecdotal evidence sug-

gests that vulnerability reproduction is extremely labor-

intensive and time-consuming [18, 53]. Our study seeks



to provide a first in-depth understanding of reproduc-

tion difficulties of crowd-reported vulnerabilities while

exploring solutions to boost the reproducibility. Using

the memory error vulnerability reports as examples, we

seek to answer three specific questions. First, how repro-

ducible are existing security vulnerability reports based

on the provided information? Second, what are root

causes that contribute to the difficulty of vulnerability re-

production? Third, what are possible ways to systemat-

ically improve the efficiency of vulnerability reproduc-

tion?

3 Methodology and Dataset

To answer these questions, we describe our high-level

approach and collect the dataset for our experiments.

3.1 Methodology Overview

Our goal is to systemically measure the reproducibility of

existing security vulnerability reports. There are a num-

ber of challenges to perform this measurement.

Challenges. The first challenge is that reproducing

a vulnerability based on existing reports requires almost

exclusively manual efforts. All the key steps of reproduc-

tion (e.g., reading the technical reports, installing the vul-

nerable software, and triggering and analyzing the crash)

are different for each case, and thus cannot be automated.

To analyze a large number of vulnerability reports in

depth, we are required to recruit a big group of analysts to

work full time for months; this is an unrealistic expecta-

tion. The second challenge is that successful vulnerabil-

ity reproduction may also depend on the knowledge and

skills of the security analysts. In order to provide a reli-

able assessment, we need to recruit real domain experts

to eliminate the impact of the incapacity of the analysts.

Approaches. Given the above challenges, it is diffi-

cult for our study to achieve both depth and scale at the

same time. We decide to prioritize the depth of the anal-

ysis while maintaining a reasonable scale for generaliz-

able results. More specifically, we select one severe type

of vulnerability (i.e., memory error vulnerability), which

allows us to form a focused group of domain experts to

work on the vulnerability reproduction experiments. We

design a systematic procedure to assess the reproducibil-

ity of the vulnerability based on available information

(instead of the hacking skills of the experts). In addition,

to complement our empirical measurements, we conduct

a user study with external security professionals from

both academia and industry. The latter will provide us

with their perceptions towards existing vulnerability re-

ports and the reproduction process. Finally, we combine

Dataset Vulnerability PoCs All Refs Valid Refs

CVE 291 332 6,044 4,694

Non-CVE 77 80 0 0

Total 368 412 6,044 4,694

Table 1: Dataset overview.

the results of the first two steps to discuss solutions to fa-

cilitate efficient vulnerability reproduction and improve

the usability of current vulnerability reports.

3.2 Vulnerability Report Dataset

For our study, we gather a large collection of reported

vulnerabilities from the past 17 years. In total, we col-

lect two datasets including a primary dataset of vulnera-

bilities with CVE IDs, and a complementary dataset for

vulnerabilities that do not yet have a CVE ID (Table 1).

We focus on memory error vulnerabilities due to their

high severity and significant real-world impact. In ad-

dition to the famous examples such as Heartbleed, and

WannaCry, there are more than 10,000 memory error

vulnerabilities listed on the CVE website. We crawled

the pages of the current 95K+ entries (2001 – 2017) and

analyzed their severity scores (CVSS). Our result shows

that the average CVSS score for memory error vulner-

abilities is 7.6, which is clearly higher than the overall

average (6.2), confirming their severity.

Defining Key Terms. To avoid confusion, we define

a few terms upfront. We refer to the web page of each

CVE ID on the CVE website as a CVE entry. In each

CVE entry’s reference section, the cited websites are re-

ferred as information source websites or simply source

websites. The source websites provide detailed technical

reports on each vulnerability. We consider these techni-

cal reports on the source websites as the crowd-sourced

vulnerability reports for our evaluation.

Primary CVE Dataset. We first obtain a random

sample of 300 CVE entries [5] on memory error vul-

nerabilities in Linux software (2001 to 2017). We focus

on Linux software for two reasons. First, reproducing

a vulnerability typically requires the source code of the

vulnerable software (e.g., compilation options may af-

fect whether the binary is vulnerable). The open-sourced

Linux software and Linux kernel make such analysis

possible. As a research group, we cannot analyze closed-

sourced software (e.g., most Windows software), but the

methodology is generally applicable (i.e., software ven-

dors have access to their own source code). Second,

Linux-based vulnerabilities have a high impact. Most en-

terprise servers, data center nodes, supercomputers, and

even Android devices run Linux [8, 57].

From the 300 CVE entries, we obtain 291 entries

where the software has the source code. In the past

17 years, there have been about 10,000 CVE entries on





Type of PoC Default Action

Shell commands Run the commands with the default shell

Script program (e.g., python) Run the script with the appropriate interpreter

C/C++ code Compile code with default options and run it

A long string Directly input the string to the vulnerable program

A malformed file (e.g., jpeg) Input the file to the vulnerable program

Table 2: Default trigger method for proof-of-concept (PoC) files.

Building System Default Commands

automake make; make install

autoconf & ./configure; make;

automake make install

cmake mkdir build; cd build;

cmake ../; make; make install

Table 3: Default install commands.

production stage, he triggers and verifies the vulnerabil-

ity by using the PoC provided in the vulnerability report.

In our experiment, we restrict security analysts to fol-

low this procedure, and use only the instructions and ref-

erences tied to vulnerability reports. In this way, we can

objectively assess the quality of the information in exist-

ing reports, making the results not (or less) dependent on

the personal hacking ability of the analysts.

4.2 The Analyst Team

We have formed a strong team of 5 security analysts

to carry out our experiment. Each analyst not only has

in-depth knowledge of memory error vulnerabilities, but

also has first-hand experience analyzing vulnerabilities,

writing exploits, and developing patches. The analysts

regularly publish at top security venues, have rich CTF

experience, and have discovered and reported over 20

new vulnerabilities–which are listed on the CVE web-

site. In this way, we ensure that the analysts are able

to: understand the information in the reports and follow

the pre-defined workflow to generate reliable results. To

provide the “ground-truth reproducibility”, the analysts

work together to reproduce as many vulnerabilities as

possible. If a vulnerability cannot be reproduced by one

analyst, other analysts will try again.

4.3 Default Settings

Ideally, a vulnerability report should contain all the nec-

essary information for a successful reproduction. In

practice, however, the reporters may assume that the re-

ports will be read by security professionals or software

engineers, and thus certain “common sense” information

can be omitted. For example, if a vulnerability does not

rely on special configuration options, the reporter might

believe it is unnecessary to include software installation

details in the report. To account for this, we develop a

set of default settings when corresponding details are not

available in the original report. We set the default set-

tings as a way of modeling the basic knowledge of soft-

ware analysis.

• Vulnerable Software Version. This information is

the “must-have” information in a report. Exhaustively

guessing and validating the vulnerable version is ex-

tremely time-consuming; this is an unreasonable bur-

den for the analysts. If the version information is

missing, we regard the reproduction as a failure.

• Operating System. If not explicitly stated, the default

OS will be a Linux system that was released in (or

slightly before) the year when the vulnerability was

reported. This allows us to build the software with the

appropriate dependencies.

• Installation & Configuration. We prioritize compil-

ing using the source code of the vulnerable program.

If the compilation and configuration parameters are

not provided, we install the package based on the de-

fault building systems specified in software package

(see Table 3). Note that we do not introduce any extra

compilation flags beyond those required for installa-

tion.

• Proof-of-Concept (PoC). Without a PoC, the vulner-

ability reproduction will be regarded as a failed at-

tempt because it is extremely difficult to infer the PoC

based on the vulnerability description alone.

• Trigger Method for PoC. If there is a PoC without

details on the trigger method, we attempt to infer it

based on the type of the PoC. Table 2 shows those

default trigger methods tied to different PoC types.

• Vulnerability Verification. A report may not spec-

ify the evidence of a program failure pertaining to the

vulnerability. Since we deal with memory error vul-

nerabilities, we deem the reproduction to be success-

ful if we observe the unexpected program termination

(or program “crash”).

4.4 Controlled Information Sources

For a given CVE entry, the technical details are typi-

cally available in the external references. We seek to

examine the quality of the information from different

sources. More specifically, we select the most cited

websites across CVE entries and attempt to reproduce

the vulnerability using the information from individual

sources alone. This allows us to compare the quality of

information from different sources. We then combine all

the sources of information to examine the actual repro-

ducibility.



Exp. Setting CVE Reproduction (N=291) Vulnerability Reports for CVE w/ Missing Information

Covered Succeed Overall Software Software Software OS PoC Trigger Vulnerability

CVE IDs # (%) Rate (%) Version Install. Config. Info. File Method Verification

SecurityFocus 256 32 (12.6%) 11.0% 9 255 233 116 131 210 227

Redhat Bugzilla 195 19 (9.7%) 6.5% 48 195 179 0 154 168 147

ExploitDB 156 46 (29.5%) 15.8% 5 155 137 132 20 100 111

OpenWall 153 67 (43.8%) 23.0% 28 152 140 153 72 72 71

SecurityTracker 89 4 (4.5%) 1.4% 3 87 71 73 69 62 61

Combined-top5 287 126 (43.9%) 43.3% 3 284 259 55 70 125 138

Combined-all 291 182 (62.5%) 62.5% 1 280 256 52 17 82 106

Exp. Setting Non-CVE Reproduction (N=77) Vulnerability Reports for Non-CVE w/ Missing Information

Combined-all 77 20 (25.6%) 25.6% 0 70 67 32 26 15 26

Table 4: Statistics of the reproduction results. The overall rate is calculated using the total number of CVE entries

(291) and non-CVE entries (77) as the base respectively.

The top 5 referenced websites in our dataset are: Secu-

rityFocus, Redhat Bugzilla, ExploitDB, OpenWall, and

SecurityTracker. Table 4 shows the number of CVE IDs

each source website covers in our dataset. Collectively,

287 out of 291 CVE entries (98.6%) have cited at least

one of the top 5 source websites. To examine the im-

portance of these 5 source websites to the entire CVE

database, we analyzed the full set of 95K CVE IDs. We

show that these 5 websites are among the top 10 mostly

cited websites, covering 71,358 (75.0%) CVE IDs.

Given a CVE entry, we follow the aforementioned

workflow, and conduct 3 experiments using different in-

formation sources:

• CVE Single-source. We test the information from

each of the top 5 source websites one by one (if the

website is cited). To assess the quality of the informa-

tion only within the report, we do not use any infor-

mation which is not directly available on the source

website (849 experiments). That is, we do not use in-

formation contained in external references.

• CVE Combined-top5. We examine the combined in-

formation from all the 5 source websites. Similar to

the single-source setting, we do not follow their exter-

nal links (287 experiments).

• CVE Combined-all. Finally, we combine all the in-

formation contained: in the original CVE entry, in

the direct references, and in the references contained

within the direct references (291 experiments).

Non-CVE entries typically do not contain references.

We do not perform the controlled analysis. Instead,

we directly run “combined-all” experiments (77 exper-

iments). In total, our security analysts run 1504 experi-

ments to complete the study procedure.

5 Measurement Results

Next, we describe our measurement results with a focus

on the time spent on the vulnerability reproduction, the

reproduction success rate, and the key contributing fac-

tors to the reproduction success.

5.1 Time Spent

The three experiments take 5 security analysts about

1600 man-hours to finish. On average, each vulnerability

report for CVE cases takes about 5 hours for all the pro-

posed tests, and each vulnerability report for non-CVE

cases takes about 3 hours. Based on our experience, the

most time-consuming part is to set up the environment

and compile the vulnerable software with the correct op-

tions. For vulnerability reports without a usable PoC, it

takes even more time to read the code in the PoC files and

test different trigger methods. After combining all the

available information and applying the default settings,

we successfully reproduced 202 out of 368 vulnerabili-

ties (54.9%).

5.2 Reproducibility

Table 4 shows the breakdown of the reproduction results.

We also measured the level of missing information in the

vulnerability reports and the references. We calculate

two key metrics: the true success rate and the overall

success rate. The true success rate is the ratio of the

number of successfully reproduced vulnerabilities over

the number of vulnerabilities that a given information

source covers. The overall success rate takes the cov-

erage of the given information source into account. It is

the ratio of the successful cases over the total number of

vulnerabilities in our dataset. If a vulnerability has mul-

tiple PoCs associated to it, as long as one of the PoCs

turns out to be successful, we regard this vulnerability as

reproducible. Based on Table 4, we have four key obser-

vations.

First, the single-source setting returns a low true suc-

cess rate and even a lower overall success rate. OpenWall

has the highest true success rate (43.8%) as we found a

number of high-quality references that documented the

detailed instructions. However, OpenWall only covers



Missing Succeeded Failed All

Information (202) (166) (368)

Software version 0 (0.0%) 1 (0.6%) 1 (0.3%)

PoC file 0 (0.0%) 43 (25.9%) 43 (11.7%)

Trigger method 14 (6.9%) 83 (50.0% ) 97 (26.4%)

OS info. 35 (17.3%) 49 (29.5%) 84 (22.8%)

Verif. method 45 (22.3%) 87 (52.4%) 132 (35.8%)

Software config. 190 (94.1%) 133 (80.1%) 323 (87.7%)

Software Install. 195 (96.5%) 155 (93.4%) 350 (95.1%)

Table 5: Missing information for the combined-all set-

ting for all vulnerability reports (CVE and non-CVE).

All the missing information in the “succeeded” cases

were correctly recovered by the default setting.

153 CVE IDs which lowers its overall success rate to

23.0%. Contrarily, SecurityFocus and Redhat Bugzilla

cover more CVE IDs (256 and 195) but have much lower

true success rates (12.6% and 9.7%). Particularly, Secu-

rityFocus mainly summarizes the vulnerabilities but the

information does not directly help the reproduction. Ex-

ploitDB falls in the middle, with a true success rate of

29.5% on 156 CVE IDs. SecurityTracker has the lowest

coverage and true success rate.

Second, combining the information of the top 5 web-

sites has clearly improved the true success rate (43.9%).

The overall success rate also improved (43.3%), since the

top 5 websites collectively cover more CVE IDs (287 out

of 291). The significant increases in both rates suggest

that each information source has its own unique contribu-

tions. In other words, there is relatively low redundancy

between the 5 source websites.

Third, we can further improve the overall success rate

to 62.5% by iteratively reading through all the refer-

ences. To put this effort into the context, combined-top5

involves reading 849 referenced articles, and combined-

all involves significantly more articles to read (4,694).

Most articles are completely unstructured (e.g., techni-

cal blogs), and it takes extensive manual efforts to ex-

tract the useful information. To the best of our knowl-

edge, it is still an open challenge for NLP algorithms

to accurately interpret the complex logic in technical re-

ports [60, 52, 44]. Our case is more challenging due to

the prevalence of special technical terms, symbols, and

even code snippets mixed in unstructured English text.

Finally, for the 77 vulnerabilities without CVE ID, the

success rate is 25.6%, which is lower compared to that

of all the CVE cases (combined-all). Recall that non-

CVE cases are contributed by the ExploitDB website. If

we only compare it with the CVE cases from ExploitDB,

the true success rate is more similar (29.5%). After we

aggregate the results for both CVE and non-CVE cases,

the overall success rate is only 54.9%. Considering the

significant efforts spent on each case, the result indicates

poor usability and reproducibility in crowdsourced vul-

nerability reports.

5.3 Missing Information

We observe that it is extremely common for vulnerability

reports to miss key information fields. On the right side

of Table 4, we list the number of CVE IDs that missed

a given piece of information. We show that individual

information sources are more likely to have incomplete

information. In addition, combining different informa-

tion sources helps retrieve missing pieces, particularly

PoC files, trigger methods, and OS information.

In Table 5, we combine all the CVE and non-CVE en-

tries and divide them into two groups: succeeded cases

(202) and failed cases (166). Then we examine the miss-

ing information fields for each group with the combined-

all setting. We show that even after combining all the

information sources, at least 95.1% of the 368 vulnera-

bilities still missed one required information field. Most

reports did not include details on software installation

options and configurations (87%+), or the affected OS

(22.8%); these information are often recoverable us-

ing “common sense” knowledge. Fewer vulnerabilities

missed PoC files (11.7%) or methods to trigger the vul-

nerability (26.4%).

Missing information vs. Reproducibility. We ob-

serve that successful cases do not necessarily have com-

plete information. More than 94% of succeeded cases

missed the software installation and configuration in-

structions; 22.3% of the succeeded cases missed the in-

formation on the verification methods, and 17.3% missed

the operating system information. The difference be-

tween the successful and the failed cases is that the miss-

ing information of the succeeded cases can be resolved

by the “common-sense” knowledge (i.e., the default set-

tings). On the other hand, if the vulnerable software ver-

sion, PoC files or the trigger method are missing, then

the reproduction is prone to failure. Note that for failed

cases, it is not yet clear which information field(s) are the

root causes (detailed diagnosis in the next section).

5.4 Additional Factors

In addition to the completeness of information in the re-

ports, we also explore other factors correlated to the re-

production success. In the following, we break down the

results based on the types and severity levels of vulnera-

bilities, the complexity of the affected software, and the

time factor.

Vulnerability Type. In Figure 4, we first break down

the reproduction results by vulnerability type. We find

that Stack Overflow vulnerabilities are most difficult to

reproduce with a reproduction rate of 40% or lower. Re-

call that Stack Overflow is also the most common vulner-

abilities in our dataset (Figure 1). Vulnerabilities such as





6 Bridging the Gap

So far, our results suggest that it is extremely common

for vulnerability reports to miss vital information for the

reproduction. By applying our intuitive default settings

(i.e., common sense knowledge), we were able to repro-

duce 54.9% of the vulnerabilities. However, there are

still a staggering 45.1% of failed cases where the missing

information cannot be resolved by common sense knowl-

edge. In this section, we revisit the failed cases and at-

tempt to reproduce them through extensive manual trou-

bleshooting. We use specific examples to discuss useful

techniques when recovering missing information.

6.1 Method and Result Overview

For a given “failed” case, our goal is to understand the

exact underlying causes for the reproduction failure. We

employ a variety of ad-hoc techniques as demanded by

each case, including debugging the software and PoC

files, inspecting and modifying the source code, testing

the cases in multiple operating systems and versions, and

searching related hints on the web. The failed cases take

substantially longer to troubleshoot. Through intensive

manual efforts (i.e., another 2,000 man-hours), we suc-

cessfully reproduced another 94 CVE vulnerabilities and

57 non-CVE vulnerabilities, increasing the overall suc-

cess rate from 54.9% to 95.9%. Combined with the pre-

vious experiments, the total time spent are 3,600 man-

hours for the 5 analysts (more than 3 months). Many of

the reported vulnerabilities are inherently fragile. Their

successful reproduction relies on the correct deduction of

non-trivial pieces of missing information. Unfortunately,

there are still 15 vulnerabilities which remain unsuccess-

ful after attempted by all 5 analysts.

6.2 Case Studies

In the following, we present detailed case studies to il-

lustrate techniques that are shown to be useful to recover

different types of missing information.

A: Missing Software Version. As shown in

Table 4, the software version information is missing

in many reports, especially, on individual source web-

sites. For most of the cases (e.g., CVE-2015-7547 and

CVE-2012-4412), the missed version information can be

recovered by reading other external references. There

is only 1 case (CVE-2017-12858), for which we can-

not find the software version information in any of the

cited references. Eventually, we recover the version in-

formation from an independent tech-blog after extensive

searching through search engines and forum posts.

B: Missing OS & Environment Information. If the

reproduction failure is caused by the choice of OS, it is

very time-consuming to troubleshoot. For instance, for

the coreutils CVE-2013-0221/0222/0223, we found

that the vulnerabilities only existed in a specific patch by

SUSE: coreutils-i18n.patch. If the patch was not

applied to the OS distribution (e.g., Ubuntu), then the

vulnerability would not be triggered, despite the report

claiming coreutils 8.6 is vulnerable. Another example

is CVE-2011-1938 where the choice of OS has an influ-

ence on PHP’s dependencies. The operating systems we

chose shipped an updated libxml which did not permit

the vulnerable software to be installed. This is because

the updated APIs caused PHP to fail during installation.

Without relevant information, an analyst needs to test a

number of OS and/or library versions.

C: Missing Installation/Configuration Information

While default settings have helped recover information

for many reports, they cannot handle special cases. We

identified cases where the success of the reproduction di-

rectly depends on how the software was compiled. For

example, the vulnerability CVE-2013-7226 is related to

the use of the gd.so external library. The vulnerability

would not be triggered if PHP is not compiled with the “-

-with-gd” option before compilation. Instead, we would

get an error from a function call without definition. Sim-

ilarly, CVE-2007-1001 and CVE-2006-6563 are vulner-

abilities that can only be triggered if ProFTPD is config-

ured with “--enable-ctrls” before compilation. Without

this information, the security analysts (reproducers) may

be misled to spend a long time debugging the PoC files

and trigger methods before trying the special software

configuration options.

D: Missing or Erroneous Proof-of-Concept. The

PoC is arguably one of the most important pieces of in-

formation in a report. While many source websites did

not directly include a PoC, we can often find the PoC

files through other references. If the PoC is still missing,

an analyst would have no other choices but to attempt

to re-create the PoC, which requires time and in-depth

knowledge of the vulnerable software.

In addition, we observe that many PoC files are erro-

neous. In total, we identified and fixed the errors in 33

PoC files. These errors can be something small such as

a syntax error (e.g., CVE-2004-2167) or a character en-

coding problem that affects the integrity of the PoC (e.g.,

CVE-2004-1293). For cases such as CVE-2004-0597

and CVE-2014-1912, the provided PoCs are incomplete,

missing certain files that are necessary to the reproduc-

tion. We had to find them in other un-referenced websites

or re-create the missing pieces from scratch, which took

days and even weeks to succeed.

E: Missing Trigger Method. Deducing the trigger



Trigger Software PoC Software OS Software Verify.
Method Install. File Config. Info. Version Method

74 43 38 6 4 1 0

Table 6: The number of successfully reproduced vulner-

abilities where the default setting does not work.

method, similar to PoC, requires domain knowledge. For

instance, for the GAS CVE-2005-4807, simply running

the given PoC will not trigger any vulnerability. In-

stead, by knowing how GAS works, we infer that after

generating the C file, it needs to be compiled with the

“-S” option to generate the malicious assembly file. This

assembly file should then be passed to the GAS binary.

In the same way, we observe from CVE-2006-5295,

CVE-2006-4182, CVE-2010-4259, and several others,

that the PoC is used to generate a payload. The pay-

load should be fed into a correct binary to trigger the ex-

pected crash. Inferring the trigger method may be com-

plemented with hints found in other “similar” vulnerabil-

ity reports.

6.3 Observations and Lessons

Reproducing a vulnerability based on the reported infor-

mation is analogous to doing a puzzle — the more pieces

are missing, the more challenging the puzzle is. The re-

producer’s experience plays an important role in making

the first educated guess (e.g., our default settings). How-

ever, common sense knowledge often fails on the “frag-

ile” cases that require very specific conditions to be trig-

gered successfully. When the key information is omitted,

it forces the analyst to spend time doing in-depth trou-

bleshooting. Even then, the troubleshooting techniques

are limited if there are no ground-truth reference points

or the software doesn’t provide enough error informa-

tion. In a few cases, the error logs hint to problems in a

given library or a function. More often, there is no good

way of knowing whether there are errors in the choice

of the operating system, the trigger method, or even the

PoC files. The analyst will need to exhaustively test pos-

sible combinations manually in a huge searching space.

This level of uncertainty significantly increases the time

needed to reproduce a vulnerability. As we progressed

through different cases, we identified a number of useful

heuristics to increase the efficiency.

Priority of Information. Given a failed case, the key

question is which piece of information is problematic.

Instead of picking a random information category for

in-depth troubleshooting, it is helpful to prioritize cer-

tain information categories. Based on our analysis, we

recommend the following order: trigger method, soft-

ware installation options, PoC, software configuration,

and the operating system. In this list, we prioritize the

information filed for which the default setting is more

likely to fail. More specifically, now that we have suc-

cessfully reproduced 95.9% of vulnerabilities (ground-

truth), we can retrospectively examine what information

field is still missing/wrong after the default setting is ap-

plied. As shown in Table 6, there are 74 cases where

the default trigger method does not work. There are

43 cases where the default software installation options

were wrong. These information fields should have been

resolved first before troubleshooting other fields.

Location of Vulnerability. While the reporters may

not always know (and include) the information about the

vulnerable modules, files, or functions, we find such in-

formation to be extremely helpful in the reproduction

process. If such information were included, we would

be able to directly avoid troubleshooting the compilation

options and the environment setting. In addition, if the

vulnerability has been patched, we find it helpful to in-

spect the commits for the affected files and compare the

code change before and after the patch. This helps to

verify the integrity of the PoC and the correctness of the

trigger method.

Correlation of Different Vulnerabilities. It is sur-

prisingly helpful to recover missing information by read-

ing reports of other similar vulnerabilities. These include

both reports of different vulnerabilities on the same soft-

ware and reports of similar vulnerability types on dif-

ferent software. It is particularly helpful to deduce the

trigger method and spot errors in PoC files. More specifi-

cally, out of the 74 cases that failed on the trigger method

(Table 6), we recovered 68 cases by reading other simi-

lar vulnerability reports (16 for the same software, 52

for similar vulnerability types). In addition, out of the

38 cases that failed on the PoC files, we recovered/fixed

the PoCs for 31 cases by reading the example code from

other vulnerability reports. This method is less success-

ful on other information fields such as “software installa-

tion options” and “OS environment”, which are primarily

recovered through manual debugging.

7 User Survey

To validate our measurement results, we conduct a sur-

vey to examine people’s perceptions towards the vulner-

ability reports and their usability. Our survey covers a

broad range of security professionals from both industry

and academia, which helps calibrate the potential biases

from our own analyst team.

7.1 Setups

Survey Questions. We have 3 primary questions. Q1

if you were to reproduce a vulnerability based on a re-





Information Necessary Missing

PoC files 17 15

Trigger method 17 13

Vulnerable software version 17 1

OS information 13 6

Source code of vulnerable software 4 2

Software configuration 2 3

Vulnerability verification 1 2

Software installation 1 1

The exact location of the vulnerable code 18 9

Stack crash dump 1 0

Table 7: User responses to what information is neces-

sary to the reproduction, and what information is often

missing in existing reports.

Method #

Read, test, and modify the PoC file 35

Searching the CVE ID via search engines 32

Read code change before and after the vulnerability patch 31

Guessing the information based on experience 30

Search on popular forums discussing bugs (e.g., bugzilla) 30

Searching in other similar vuln. reports (e.g., same software) 21

Asking friends and/or colleagues 18

Asking questions online (e.g., online forums, Twitter) 11

Bin diff, wait for PoC/exploit 1

Run the PoC and debug it in QEMU 1

Table 8: User responses to the possible methods to re-

cover the missing information in vulnerability reports.

The first 8 methods are listed options in Q3, and the last

two are added by the respondents.

line forums) or ask colleagues. One possible explanation

(based on our own experience) is that questions related

to vulnerability reproduction rarely get useful answers

when posted online.

Respondents also left comments in Q3’s text box.

These comments, however, are already covered by the

listed options. For example, one respondent suggested

“Bin diff”, which is similar to the listed option: “Read

code change before and after the vulnerability patch”.

Another respondent suggested“Run the PoC and debug

it in QEMU”, which belong to the category of “Read,

test and modify the PoC file”. We have compared the an-

swers from more experienced respondents (working ex-

perience > 5 years) and those from less experienced re-

spondents. We did not find major differences (the rank-

ing orders are the same) and thus omit the result for

brevity. Overall, the survey results provide external val-

idations to our empirical measurement results, and con-

firm the validity of our information recovery methods.

8 Discussion

Through both quantitative and qualitative analyses, we

have demonstrated the poor-reproducibility of crowd-

reported vulnerabilities. In the following, we first sum-

marize the key insights from our results, and offer sug-

gestions on improving the reproducibility of crowd-

sourced reports. Following, we use this opportunity to

discuss implications on other types of vulnerabilities and

future research directions. Finally, we would like to

share the full “reproducible” vulnerability dataset with

the community to facilitate future research.

8.1 Our Suggestions

To improve the reproducibility of the reported vulnera-

bilities, it is likely that a joint effort is needed from differ-

ent players in the ecosystem. Here, we discuss the pos-

sible approaches from the perspectives of vulnerability-

reporting websites, vulnerability reporters, and repro-

ducers.

Standardizing Vulnerability Reports. Vulnerability-

reporting websites can enforce a more strict submis-

sion policy by asking the reporters to include a mini-

mal set of required information fields. For example, if

the reporter has crafted the PoC, the website may re-

quire the reporter to fill in trigger method and the com-

pilation options in the report. At the same time, web-

sites could also provide incentives for high-quality sub-

missions. Currently, program managers in bug bounty

programs can enforce more rigorous submission policies

through cash incentives. For public disclosure websites,

other incentives might be more feasible such as commu-

nity recognition [58, 53]. For example, a leaderboard

(e.g., HackerOne) or an achievement system (e.g., Stack-

Exchange) can help promote high-quality reports.

Automated Tools to Assist Vulnerability Reporters.

From the reporter’s perspective, manually collecting all

the information can be tedious and challenging. The high

overhead could easily discourage the crowdsourced re-

porting efforts, particularly if the reporting website has

stricter submission guidelines. Instead of relying on pure

manual efforts, a more promising approach is to develop

automated tools which can help collecting information

and generating standardized reports. Currently, there are

tools available in specific systems which can aid in this

task. For example, reportbug in Debian can automat-

ically retrieve information from the vulnerable software

and system. However, more research is needed to de-

velop generally applicable tools to assist vulnerability re-

porters.

Vulnerability Reproduction Automation. Given the

heterogeneous nature of vulnerabilities, the reproduction

process is unlikely to be fully automated. Based on Fig-

ure 3, we discuss the parts that can be potentially auto-

mated to improve the efficiency of the reproducers.

First, for the report gathering step, we can potentially

build automated tools to search, collect, and fuse all the



available information online to generate a “reproducible”

report. Our results have confirmed the benefits of merg-

ing all available information to reproduce a given vul-

nerability. There are many open challenges to achieving

this goal, such as verifying the validity of the informa-

tion and reconciling conflicting information. Second, the

environment setup step is difficult to automate due to the

high-level of variability across reports. A potential way

to improve the efficiency is to let the reproducer prepare

a configuration file to specify the environment require-

ments. Then automated tools can be used to generate

a Dockerfile and a container for the reproducer to di-

rectly verify the vulnerability. Third, the software prepa-

ration part can also be automated if the software name

and vulnerable versions are well-defined. The exceptions

are those that rely on special configuration or installation

flags. Finally, the reproduction would involve primarily

manual operations. However, if the PoC, trigger method,

and verification method are all well-defined, it is possible

for the reproducer to automate the verification process.

8.2 Limitations

Other Vulnerability Types. While this study primar-

ily focuses on memory error vulnerabilities, anecdotal

evidence show that the reproducibility problem applies

to other vulnerability types. For example, a number of

online forums are specially formed for software devel-

opers and users to report and discuss various types of

bugs and vulnerabilities [3, 11, 12]. It is not uncommon

for a discussion thread to last for weeks or even years

before eventually reproducing a reported vulnerability.

For example, an Apache design error required back and

forth discussion over 9 days to reproduce the bug [1].

In another example, a compilation error in GNU Binu-

tils led several developers to complain about their failed

attempts when reproducing the issue. The problem has

been left unresolved for nearly a year [2]. Nonetheless,

further research is still needed to examine how our statis-

tical results can generalize to other vulnerability types.

Public vs. Private Vulnerability Reports. This

paper is focused on open-source software and public

vulnerability reports. Most of the software we stud-

ied employ public discussion forums and mailing lists

(e.g., Bugzilla) where there are back-and-forth commu-

nications between the reporters and software developers

throughout the vulnerability reproduction and patching

process. The communications are public and thus can

help the vulnerability reproduction of other parties (e.g.,

independent research teams). Although our results may

not directly reflect the vulnerability reproduction in pri-

vate bug bounty programs, there are some connections.

For example, many vulnerabilities reported to private

programs would go public after a certain period of time

(e.g., after the vulnerabilities are fixed). To publish the

CVE entry, the original vulnerability reports must be dis-

closed in the references [6]. A recent paper shows that

vulnerability reports in private bug bounty programs also

face key challenges in reproduction [53], which is com-

plementary to our results.

8.3 Future Work

Our future work primarily focuses on automating parts of

the vulnerability reproduction process. For example, our

findings suggest that aggregating the information across

different source websites is extremely helpful when re-

covering missing information in individual reports. The

CVE IDs can help link different reports scattered across

websites. However, the open question is how to automat-

ically and accurately extract and fuse the unstructured in-

formation into a single report. This is a future direction

for our work. In addition, during our experiments, we

noticed that certain reports had made vague and seem-

ingly unverified claims, some of which were even mis-

leading and caused significant delays to the reproduc-

tion progress. In this analysis, we did not specifically

assess the impact of erroneous information, which will

need certain forms of automated validation technique.

8.4 Dataset Sharing

To facilitate future research, we will share our full dataset

with the research community. Reproducible vulnerabil-

ity reports can benefit the community in various ways. In

addition to helping the software developers and vendors

to patch the vulnerabilities, the reports can also help re-

searchers to develop and evaluate new techniques for vul-

nerability detection and patching. In addition, the repro-

ducible vulnerability reports can serve as educational and

training materials for students and junior analysts [53].

We have published the full dataset of 291 vulnerabili-

ties with CVE-IDs and 77 vulnerabilities without CVE-

IDs. The dataset is available at https://github.com/

VulnReproduction/LinuxFlaw. For each vulnerability,

we have filled in the missing pieces of information, an-

notated the issues we encountered during the reproduc-

tion, and created the appropriate Dockerfiles for each

case. Each vulnerability report contains structured infor-

mation fields (in HTML and JSON), detailed instructions

on how to reproduce the vulnerability, and fully-tested

PoC exploits. In the repository, we have also included

the pre-configured virtual machines with the appropriate

environments. To the best of our knowledge, this is the

largest public ground-truth dataset of real-world vulner-

abilities which were manually reproduced and verified.



9 Related Work

There is a body of work investigating vulnerabilities and

bug reports in both security and software engineering

communities. In the following, we summarize the key

existing works and highlight the uniqueness of our work.

In the field of software engineering, past research ex-

plored bug fixes in general (beyond just security-related

bugs). Bettenburg et al. revealed some critical infor-

mation needed for software bug fixes [28]. They found

that reporters typically do not include these informa-

tion in bug reports simply due to the lack of automated

tools. Aranda et al. investigated coordination activities

in bug fixing [26], demonstrating that bug elimination is

strongly dependent on social, organizational, and tech-

nical knowledge that cannot be solely extracted through

automation of electronic repositories. Ma et al. stud-

ied bug fixing practices in a context where software bugs

are casually related across projects [45]. They found that

downstream developers usually apply temporary patches

while waiting for an upstream bug fix.

Similar to [26], Guo et al. also investigated how soft-

ware developers communicate and coordinate in the pro-

cess of bug fixing [36, 37]. They observed that bugs

handled by people on the same team or working in geo-

graphical proximity were more likely to get fixed. Zhong

and Su framed their investigation around automated bug

fixes and found that the majority of bugs are too compli-

cated to be automatically repaired [59]. Park et al. con-

ducted an analysis on the additional efforts needed after

initial bug fixes, finding that over a quarter of remedies

are problematic and require additional repair [50]. Soto

et al. conducted a large-scale study of bug-fixing com-

mits in Java projects, observing that less than 15% of

common bug fix patterns can be matched [51]. Similar

to our research, Chaparro et al. explored missing infor-

mation from bug reports, but focusing on automatically

detecting their absence/presence [31]. Instead, our work

focuses on understanding the impact of these missing in-

formation on the reproducibility.

In the security field, research on vulnerability reports

mainly focuses on studying and understanding the vul-

nerability life cycle. In a recent work, Li and Paxson con-

ducted a large scale empirical study of security patches,

finding that security patches have a lower footprint in

code bases than non-security bug fixes [43]. Frei et al.

compared the patching life cycle of newly disclosed vul-

nerabilities, quantifying the gap between the availability

of a patch after an exploit was released [35].

Similarly, Nappa et al. analyzed the patch deployment

process of more than one thousand vulnerabilities, find-

ing that only a small fraction of vulnerable hosts apply

security patches right after an exploit release [47]. Oz-

ment and Schechter measured the rate at which vulner-

abilities have been reported, finding foundational vul-

nerabilities to have a median lifetime of at least 2.6

years [49]. In addition to the study of vulnerability life

cycles, a recent work [53] reveals differing results be-

tween hackers and testers when identifying new vulner-

abilities, highlighting the importance of experience and

security knowledge. In this work, we focus on under-

standing vulnerability reproduction, which is subsequent

to software vulnerability identification.

Unlike previous works that mainly focus on security

patches or bug fixes, our work seeks to tease apart vul-

nerability reports from the perspective of vulnerability

reproduction. To the best of our knowledge, this is the

first study to provide an in-depth analysis of the practical

issues in vulnerability reproduction. Additionally, this is

the first work to study a large amount of real-world vul-

nerabilities through extensive manual efforts.

10 Conclusion

In this paper, we conduct an in-depth empirical analy-

sis on real-world security vulnerabilities, with the goal

of quantifying their reproducibility. We show that it

is generally difficult for a security analyst to reproduce

a failure pertaining to a vulnerability with just a sin-

gle report obtained from a popular security forum. By

leveraging a crowdsourcing approach, the reproducibil-

ity can be increased but troubleshooting the failed vul-

nerabilities still remains challenging. We find that, apart

from Internet-scale crowdsourcing and some interesting

heuristics, manual efforts (e.g. debugging) based on ex-

perience are the sole way to retrieve missing information

from reports. Our findings align with the responses given

by the hackers, researchers, and engineers we surveyed.

With these observations, we believe there is a need to:

introduce more effective and automated ways to collect

commonly missing information from reports and to over-

haul current vulnerability reporting systems by enforcing

and incentivizing higher-quality reports.
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